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Abstract

Notwithstanding that EG3D [3] achieved realistic im-
age quality with high computational efficiency, the gaze fol-
lowing problem hinders the real-world application of 3D
GANs such as virtual reality and human-computer interac-
tion. Due to the data bias when rotating the face, all ex-
isting 3D GANs cannot maintain the direction of eye when
the camera is rotating and gazes the camera. In this work,
we tackle this problem by fusing 3D-aware image synthesis
with gaze estimation for the first time. We subjoin a pre-
trained state-of-the-art gaze estimation model called L2CS-
Net [1] into training pipeline of EG3D, successfully ad-
dressed the inherent gaze following issue on FFHQ dataset.
Code is available at: https://github.com/3D-
eye-centric-bias/Gaze-Corrected-EG3D

1. Introduction
Recently, remarkable advancement in deep learning trig-

gered creation application such as generating high-fidelity
images or 3D objects. In particular, deep generative 3D-
aware image synthesis [10, 18], which generates high-
resolution photorealistic images, capturing 3D-consistency
and intricate geometry of 3D objects from 2D image collec-
tions, draws wide attention.

Recent progress [3, 4, 17, 18, 21] is mainly driven by
blending a Neural Radiance Field (NeRF) [16] into a Gen-
erative Adversarial Network (GAN) [9]. Although prior
works have achieved great success, these works, more con-
cretely EG3D [3], suffer from the gaze following prob-
lem [3], degrading the model performance. Due to the data
bias when rotating faces, the generator consistently cre-
ates an incorrect interpretation of eyes that gaze the cam-
era. In the real world, the human gaze serves as a vital cue
in a plethora of applications, including virtual reality and
human-robot interaction. Therefore, addressing the gaze
following problem holds practical significance in computer
vision and graphics applications and is possible to enhance
the model’s generalization capability.

In this paper, we propose the first approach to effectively

Figure 1. Comparison of generated sample for same individual
from ours (up), and EG3D (down). Our framework enables EG3D,
controlling the eyes to gaze the straight ahead, not following the
camera when rotating face.

preserve eye’s orientation when rotating face images. Our
strategy involves the integration of a gaze estimation [5,19]
model, designed to extract the direction vector of the gaze,
in parallel with the discriminator of EG3D. And we aim
to modify the training algorithm to ensure that the model
generates a face from the same latent code while enabling it
to rotate. We provide the details of our approach in Section
3. Also, Fig. 3 summarizes our training framework. And
through our new framework, we obtained the successful
results on the FFHQ dataset, solving the gaze following
problem without harming the multi-view consistency and
pose accuracy of EG3D (see Fig. 1).

In summary, our contributions are the following:

• We tackle the gaze following problem for the first time
in the field of 3D-aware image synthesis, by integrat-
ing pre-trained gaze estimation model into the training
pipeline of EG3D.

• We successfully solved the gaze following problem,
coming at a price of image quality. However, in terms
of view consistency and pose accuracy, our model
achieve better than 90% of the performance of EG3D.
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2. Related work

Generative 3D-aware image synthesis. GANs have re-
cently achieved the great success in deep generative 3D-
aware image synthesis. Although state-of-the-art GANs
are viable in 2D only and lack knowledge of 3D structure,
groundbreaking prior works integrate NeRF models into 2D
GANs to overcome the problem [3, 4, 17, 18, 21]. While
such methods obtain 3D consistency with fair quality, they
encounter challenges when training on high-resolution im-
ages, arising from the expensive rendering process involved
in radiance fields. GIRAFFE [17] discards this inefficiency
by convolutional network renderer, but harming the 3D con-
sistency. And EG3D [3] improves both efficiency and im-
age quality by introducing a tri-plane-based framework with
dual-discrimination strategy, and have demonstrated state-
of-the-art results on the FFHQ [14] dataset.

All aforementioned works, however, ignored the gaze
following problem in spite of its importance in real-
world applications, focusing on efficiency and image
quality only. Hence, in this work we advocate to achieve
better disentanglement and fine-grained control of eye gaze.

Gaze estimation. Mainly due to the advances of deep
learning, CNN-based methods are the most successful ap-
proaches for gaze estimation. Without any dedicated hard-
wares, it captures human eye appearance and regresses the
gaze direction from the images captured by cameras that
are inexpensive and off-the-shelf such as webcams. And
most of these works have focused on developing novel net-
work architectures and framework. [1,6,8,15,20] For exam-
ple, Gaze360 model [15] integrated LSTM [13] into ResNet
[11] to predict gaze angles from webcam video. Despite
achieving high accuracy, these models exhibit deficiencies
in robustness and generalization, particularly when exposed
to unconstrained factors including varying lighting condi-
tions, diverse head poses. L2CS-Net [1] demonstrated the
state-of-the-art results by gaze bin classification; estimating
the neighborhood of the gaze angle in a robust manner in-
stead of directly regressing the gaze direction.

The indispensable properties of gaze estimation model
to combine in 3D-aware image synthesis are efficiency
and generalization. Definitely, gaze estimation model pre-
trained on gaze datasets must be robust on image genera-
tion dataset including FFHQ. And L2CS-Net obtained ro-
bustness with simple ResNet-based networks, not hamper-
ing the efficiency and end-to-end pipeline of EG3D. In this
regime, we adopt L2CS-Net to guide EG3D for more con-
trollable synthesis of eye gazes.

3. Method
3.1. Data preprocessing

The main problem that this paper aims to address is that
the eyes of the images generated by the EG3D model ap-
pear to be looking at the camera. The FFHQ [14] dataset
comprises a significant number of frontal photographs. The
camera poses employed by the EG3D generator during
training are derived from the actual dataset, FFHQ. Conse-
quently, an abundance of front-facing data results in a pro-
portional increase in frontal perspectives within the gener-
ated images. However, the issue addressed in this paper,
namely the problem of iris bias, is not prominently evident
in frontal photographs. Frontal images, characterized by a
direct gaze towards the camera, pose challenges in distin-
guishing whether iris bias is manifest or if it is an inherent
characteristic of facing forward. In essence, a dataset rich in
front-facing images hinders the extraction of an appropriate
camera position for learning iris bias, leading to a decrease
in overall model performance.

To address this challenge, gaze angles were extracted for
FFHQ dataset images, and only those with a yaw absolute
angle exceeding 0.4 were selectively curated for inclusion
in the training dataset, effectively addressing the impact of
biased iris positioning.

3.2. Gaze corrected EG3D architecture

Fine-tuning with adjusted gaze angles is essential to gen-
erate images where the human looks forward rather than
at the camera. To achieve the generation of images with
a forward-facing gaze, it is necessary to redefine the loss
function. The ideal images we seek are those where the
gaze aligns with the face’s direction, looking straight ahead
(Fig. 2c). However, the images generated by the exist-
ing EG3D model consistently exhibit a gaze directed at the
camera, irrespective of the face’s orientation (Fig. 2a and
Fig. 2b). In other words, the desired outcome occurs when
the yaw and pitch values representing the face’s direction
align with the yaw and pitch values of the eyes.

To address this, we extract the face angle from the cam-
era position and input the generated image into the gaze es-
timation model, L2CS, to extract the angle of the eyes. The
loss value (Sec. 3.3), calculated using these two angles, is
incorporated into the generator’s loss function to facilitate
training, ensuring alignment between the face angle and the
gaze angle of the eyes (see Fig. 3).

3.3. Loss function

In order to align the face angle and eye angle through
fine-tuning, it is essential to adjust the loss function to min-
imize the difference between these angles during training.
We modified the existing generator loss function of the
EG3D model by incorporating Mean Squared Error (MSE)
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(a) EG3D model output (right face) (b) EG3D model output (right face) (c) ideal generated image

Figure 2. The images generated by the EG3D exhibit a discrepancy between the yaw and pitch values of the eyes and those of the body,
consistently biased towards facing the camera. (a) In images generated by EG3D, the body is oriented to the left, while the eyes are facing
forward. (b) In EG3D-generated images, the body is oriented to the right, but the eyes are facing forward. (c) An ideal image would be one
where the subject is looking straight ahead without facing the camera.

Figure 3. Overall of corrected gaze EG3D architecture.

loss between the yaw and pitch values of the face and gaze,
defining a new loss function for this purpose (Eq. (1)). We
denote pitch of face as pf , pitch of gaze as pg , yaw of face
as yf , and yaw of gaze as yg .

MSE(f, g) =
1

N

N∑√
(pf − pg)2 + (yf − yg)2 (1)

4. Experiments and results
4.1. Experimental Setups

Datasets. We compare our results with EG3D on
commonly-use dataset in 3D-aware image synthesis named
FFHQ [14], a high-quality collection of human face images.
It consists of 70,000 images at 1024×1024 resolution, span-
ning a diverse range of ages, ethnicities, and facial features.
We note that there exist some images that resisted face de-
tection [3], so that we discard them for our purpose. There-
fore, our final dataset contain 69,957 images and are pre-
processed as described in Section 3.1.
Computing Resources and Time. Our experimental
process encompassed several key stages, each demanding
specific computational resources and time. Initially, data

preprocessing, including dataset download and preparation,
took about 6 hours. For the training phase, we utilized four
NVIDIA GeForce RTX 3090 GPUs, dedicating approxi-
mately 10 hours to train the model effectively. Finally, the
evaluation process, which involved comprehensive perfor-
mance assessments of our model, the baseline, and various
ablation study configurations, required an additional 6
hours. This comprehensive outline of the resources and
time investment provides insights into the computational
intensity of our experimental work.

Evaluation metrics. To evaluate our result and compare
with EG3D effectively, we inherit evaluation metrics from
their works. For image quality, we computed Fréchet In-
ception Distance (FID) [12] and Kernel Inception Distance
(KID) [2] between 50k generated images and real images.
Also, for multi-view facial identity consistency, we calcu-
late the mean of ArcFace [7] cosine similarity score be-
tween the same synthesized face rendered from random
camera poses. In addition, to assess the alignment of face
direction and gaze direction, we develop new metrics named
GAFS (Gaze-Face Alignment Score), the average of Eq. (1)
across randomly generated 1024 images.

4.2. Comparisons

Baseline. As we described, we compare our approaches
against EG3D [3], the state-of-the-art methods for deep
generative 3D-aware image synthesis, on FFHQ [14].

Qualitative results. We provide the best result synthesized
by our method with FFHQ in Fig. 4 to highlight the
power of our approach. While EG3D suffer from the gaze
following problem, our model rotates not only the face, but
also its gaze following the face. Furthermore, the generated
images maintain higher quality and view-consistency of
EG3D.

3



Figure 4. Qualitative comparison between EG3D and ours. Al-
though the details such as glasses and hair style are also influenced
by the model, our model controls the direction of eye gaze to be
consistent with facial direction.

FFHQ
GFAS ↓ FID ↓ KID ↓ ArcFace ↑ Pose ↓

EG3D 0.230 4.1 0.12 0.45 0.038
Ours 0.215 5.8 0.19 0.50 0.037

Table 1. Quantitative evaluation using GFAS, FID, KID×100, Ar-
cFace and Pose×10.

FFHQ
GFAS ↓ FID ↓ ArcFace ↑ Pose ↓

Baseline 0.233 6.3 0.45 0.031
+GL 0.225 5.3 0.45 0.038
+DP 0.228 7.8 0.47 0.039
+GL, DP (Ours) 0.215 5.8 0.50 0.037

Table 2. Quantitative evaluation of ablation study. The table com-
pares the baseline model with models having added gaze loss
(+GL), data preprocessing (+DP), and both (+GL, DP). GFAS,
FID, Pose × 10, and ArcFace metrics are presented.

Quantitative results. We provide our quantitative evalua-
tions in Tab. 1. For image quality, multi-view facial identity
consistency, and eye gaze direction assessment, we com-
puted various metrics as described in Section 4.1. As a re-
sult, due to an additional constraint on eye gaze of images,
our model shows significant degradation in image quality,
FID and KID. But in terms of view consistency and pose ac-
curacy, we demonstrate that our model succeeded to main-
tain the state-of-the-art performance of EG3D.

4.3. Ablation Study

Our ablation study, detailed in Tab. 2, focuses on the im-
pact of Gaze Loss (GL) and Data Preprocessing (DP) on

model performance. Both GL and DP independently im-
prove the Gaze-Face Alignment Score (GFAS), but their
combined use leads to a greater improvement, demonstrat-
ing their synergistic effect. DP enhances identity features
as reflected by ArcFace scores, though at the cost of image
quality (FID score). In contrast, GL improves FID score.
Together, they optimize both GFAS and balance FID and
ArcFace scores, indicating a comprehensive improvement
in image synthesis.

5. Discussion

Limitations and future work. Our approach has limita-
tions, such as unintended transformations of facial features
when using L2CS-Net, due to gradients affecting the entire
face image. Also, Adjusting latent variables for specific fea-
tures like the eyes can inadvertently alter other aspects, as
shown in Figure 1 (clothing changes) and Figure 4 (glasses
changes). This highlights the challenge of disentangling
facial features in gaze correction models. To enhance our
model, we propose some possible future works:

• Discriminator Aware of Gaze Angle: Integrate gaze
information into the discriminator for more accurate
gaze alignment.

• Freezing Early Layers of Generator: Focus training
on later layers to adjust eye details without changing
overall facial features.

• Using 3D Masks for Targeted Modifications: Ap-
ply 3D masks for precise adjustments to specific facial
features, addressing latent variable entanglement.

Conclusions. Our work represents a significant stride in
3D-aware image synthesis, focusing on the critical aspect
of gaze correction in generated images. By innovatively in-
tegrating gaze loss and data preprocessing into the 3D gen-
erative framework, we have successfully addressed the in-
herent gaze following issue prevalent in previous models.
Our method enhances the gaze-face alignment, as indicated
by the reduced GFAS.

One of the key strengths of our approach is its indepen-
dence from the specific architecture of EG3D. By defining
a universal loss function and applying data preprocessing,
our method gains versatility, suitable for various 3D gen-
erative models to enhance gaze alignment training. This
adaptability opens up broader possibilities in 3D image syn-
thesis. The effectiveness of our model in maintaining accu-
rate gaze direction and identity features signifies a notable
advancement in generative image synthesis, paving the way
for more realistic and tailored applications. Future research
can build on our work to expand the capabilities of 3D-
aware generative models.
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